Volume 31

Number 18

September 2, 1992

Inorganic Chemistry

© Copyright 1992 by the American Chemical Society

Communications

Ferrate(VI), a Novel Near-Infrared Luminophore

Markus Herren and Hans U. Güdel*

Institut für anorganische Chemie, Universität Bern, 3000 Bern 9, Switzerland

Received April 29, 1992

The ferrate(VI) ion has been known for 150 years,¹ and here we report the first observation of its luminescence spectrum. Upon photoexcitation in the visible or near-infrared (near-IR) region, crystals of K_2CrO_4 doped with 0.05% FeO₄²⁻ exhibit a sharp-line luminescence around 1.6 μ m. Its lifetime is 1.3 ms at 10 K, decreasing to 0.6 ms at room temperature. There is a potential use of luminophores of this kind as near-IR solid-state laser materials.

We have been engaged in a systematic study of the luminescence properties of transition metal ions with (3d)² electron configurations in recent years.²⁻⁴ Whereas Ti^{2+} and V^{3+} prefer octahedral lattice sites, the best characterized Mn⁵⁺ and Fe⁶⁺ species are the tetrahedral tetraoxo anions. The situation is much less clear for Cr4+. In chromium-doped forsterite, a tunable near-IR laser material,^{5,6} Cr⁴⁺ ions in tetrahedral or octahedral coordination are supposed to play an important role in the stimulated emission process.7,8

We have used literature procedures to prepare aqueous FeO₄²⁻ solutions.^{1,9} The visible and near-IR absorption spectrum of the ferrate ion is characterized by two bands at about 500 and 800 nm, leading to a purple color.¹⁰ Doped crystals were obtained from FeO₄²⁻ solutions saturated with K₂CrO₄.¹¹ Luminescence was excited at 900-1000 nm with a filtered tungsten lamp, dispersed by a ³/₄-m Spex 1702 monochromator with a grating blazed at 1.6 μ m and detected with a cooled germanium photodetector (ADC 403L). For luminescence decay measurements, the crystals were excited by a pulsed N_2 laser (337 nm),

- (1)Frémy, E. F. C. R. Hebd. Séances Acad. Sci. 1841, 12, 23.
- Ti²⁺: (a) Jacobsen, S. M.; Güdel, H. U.; Daul, C. A. J. Am. Chem. Soc. (2)1988, 110, 7610. (b) Jacobsen, S. M.; Güdel, H. U. J. Lumin. 1989,
- 43, 125. V³⁺: (a) Reber, C.; Güdel, H. U. J. Lumin. **1988**, 42, 1. (b) Reber, C.; (3)Güdel, H. U.; Meyer, G.; Schleid, T.; Daul, C. A. Inorg. Chem. 1989, 28, 3249.
- (4) Mn5+: (a) Herren, M.; Güdel, H. U.; Albrecht, C., Reinen, D. Chem. Phys. Lett. 1991, 183, 98. (b) Herren, M.; Riedener, T.; Güdel, H. U.; Albrecht, C.; Kaschuba, U.; Reinen, D. J. Lumin. 1992, 53, 452.
- (5) Verdún, H. R.; Thomas, L. M.; Andrauskas, D. M. In *Tunable Solid-State Lasers*; OSA Proceeding Series, Vol. 5; Shand, M. L.; Jenssen, H. P., Eds.; Optical Society of America: Washington, DC, 1989; pp
- (6) Petričević, V.; Gayen, S. K.; Alfano, R. R. Appl. Opt. 1989, 28, 1609.
- Jia, W.; Liu, H.; Jaffe, S.; Yen, W. M. Phys. Rev. B 1991, 43, 5234. Casas-González, J.; Jacobsen, S. M.; Hoffman, K. R.; Yen, W. M. (8)
- Advanced Solid-State Lasers; Technical Digest Series, Vol. 10; Optical Society of America: Washington, DC, 1991; p 379.
- (9) Audette, R. J.; Quail, J. W. Inorg. Chem. 1972, 11, 1904.
 (10) Carrington, A.; Schonland, D.; Symons, M. C. R. J. Chem. Soc. 1957, 659
- (11) Retgers, J. W. Z. Phys. Chem. 1892, 10, 530.

Figure 1. Luminescence spectra of 0.05% FeO42--doped K2CrO4 at three temperatures, with broad-band excitation at 900-1000 nm. The ordinate scale of the 7 K spectrum is compressed by a factor of 10. The spectra are corrected for detector sensitivity, which steeply drops between 6200 and 5850 cm⁻¹. The energy difference between cold and hot lines denoted ΔE refers to Figure 2. The vibrational sideband denoted δ refers to the bending mode of FeO_4^{2-} .

and the luminescence was detected by a germanium photodetector with 1- μ s response (ADC 403 HS) in combination with a Tektronix digital 2432A oscilloscope.

Figure 1 shows the luminescence spectrum at three temperatures between 7 K and room temperature. The prominent lines at 6209 and 6219 cm⁻¹ (7 K) are identified as electronic origins. Their assignment, as shown in Figure 2, is straightforward from a comparison with the analogous MnO_4^{3-} spectrum.⁴ The emitting state ¹E is split into two orbital components in the C_s site symmetry of K_2CrO_4 ,¹² thus leading to a cold and a hot line, respectively. The ¹E splitting ΔE , which reflects the geometrical distortion from a regular tetrahedron, is only 10 cm⁻¹ in the K_2CrO_4 host, whereas it is an order of magnitude larger in MnO₄³⁻-doped apatites and spodiosites.⁴ We notice that the luminescence intensity is strongly concentrated in the origins, with less than 10% altogether in vibrational sidebands. The line denoted δ in

Wyckoff, R. W. G. Crystal Structures, 2nd ed.; Interscience: New York, 1965; Vol. 3, pp 95-98. (12)

Figure 2. Relevant part of the energy level scheme of a tetrahedral d² ion: (a) ground and first excited states; (b) orbital splitting of ${}^{1}E$ in C_{s} site symmetry and spectroscopic transitions.

Figure 1 is separated by 310 cm⁻¹ from the cold origin line. This energy difference corresponds to the energy of a bending mode in the FeO₄²⁻ unit.⁹

The measured luminescence lifetime $\tau = 1.3$ ms at 10 K is in good agreement with the radiative lifetime estimated from the intensity of the ${}^{3}A_{2} \rightarrow {}^{1}E$ absorption lines.¹³ Since there is no noticeable drop in τ up to 100 K, we conclude that the quantum yield is close to 1 in this temperature range. At 295 K, the lifetime and the quantum yield have dropped to about 50%. This is comparable to the behavior of Mn^{5+} -doped $Sr_5(PO_4)_3Cl$ and Ca_2 -PO₄Cl, in which stimulated emission could be observed around $1.2 \,\mu\text{m}$ up to room temperature.¹⁴ We are presently studying the absorption and emission properties of FeO42-doped systems in more detail.

Acknowledgment. We are grateful to the Swiss National Science Foundation for financial support.

⁽¹³⁾ Imbusch, G. F.; Kopelman, R. In Laser Spectroscopy of Solids; Yen, W. M.; Selzer, P. M., Eds.; Springer: Berlin, 1981. Capobianco, J. A.; Cormier, G.; Moncorgé, R.; Manaa, H.; Bettinelli,

⁽¹⁴⁾ M. Appl. Phys. Lett. 1992, 60, 163.